Utilisation of magnesium phosphate cements to facilitate biodegradation within a stabilised/solidified contaminated soil

Reginald B. Kogbara¹*, Abir Al-Tabbaa¹ and Srinath R. Iyengar^{1,2}

¹Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK ²Present Address: Mechanical Engineering Program, Texas A&M University at Qatar,

Engineering Building, Education City, PO Box 23874, Doha, Qatar

*Corresponding author email: rbk22@cam.ac.uk, Tel: +44 1223 765610

Abstract

Stabilisation/solidification (S/S) of heavy metals and a parallel biodegradation of an organic contaminant using Magnesium phosphate cements (MPC) was investigated under laboratory conditions. The study was aimed at improving the robustness of S/S technology by encouraging biodegradation in order to bring about some form of contaminant attenuation over time. A silty sand soil, amended with compost was spiked with an organic contaminant,

2-chlorobenzoic acid (2CBA), and two heavy metal compounds, lead nitrate and zinc chloride. Two formulations of the MPC grouts based on different proportions of the cement constituents, with paste pH of approximately 6.5 and 10, were utilised for S/S treatment. The study involved treating the organic contaminant present in the soil with and without the heavy metals by employing the low and high pH MPC grout mixes, and using 10 and 25% compost content. Microbial activity was monitored using dehydrogenase assay, whilst the tests pertaining to the performance criteria such as contaminant concentration, unconfined compressive strength, elastic stiffness, permeability and batch leaching tests were evaluated at set periods. Contaminant recovery analysis after 140 days indicated a similar reduction in 2CBA concentration to approximately 56% in the different grout mixes. The cement constituents exhibited stimulatory and inhibitory effects on soil dehydrogenase activity. Heavy metal leachability as well as the engineering behaviour of the treated soils conformed to acceptable standards. The results of the investigations show considerable promise for the application of MPC in contaminated land remediation.

This is an author-created version: <u>regkogbara@cantab.net</u> (RB Kogbara). A definitive version was subsequently published at <u>http://rd.springer.com/article/10.1007/s11270-010-0541-7</u> in *Water, Air & Soil Pollution*, Volume 216, Issue 1 – 4, pp 411 – 427 (2011). The final publication is available at <u>www.springerlink.com</u>.

Utilisation of magnesium phosphate cements to facilitate biodegradation within a stabilised/solidified contaminated soil

Reginald B. Kogbara¹*, Abir Al-Tabbaa¹ and Srinath R. Iyengar^{1,2}

¹Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK ²Present Address: Mechanical Engineering Program, Texas A&M University at Qatar, Engineering Building, Education City, PO Box 23874, Doha, Qatar *Corresponding author email: <u>rbk22@cam.ac.uk</u>, Tel: +44 1223 765610

Abstract

Stabilisation/solidification (S/S) of heavy metals and a parallel biodegradation of an organic contaminant using Magnesium phosphate cements (MPC) was investigated under laboratory conditions. The study was aimed at improving the robustness of S/S technology by encouraging biodegradation in order to bring about some form of contaminant attenuation over time. A silty sand soil, amended with compost was spiked with an organic contaminant, 2-chlorobenzoic acid (2CBA), and two heavy metal compounds, lead nitrate and zinc chloride. Two formulations of the MPC grouts based on different proportions of the cement constituents, with paste pH of approximately 6.5 and 10, were utilised for S/S treatment. The study involved treating the organic contaminant present in the soil with and without the heavy metals by employing the low and high pH MPC grout mixes, and using 10 and 25% compost content. Microbial activity was monitored using dehydrogenase assay, whilst the tests pertaining to the performance criteria such as contaminant concentration, unconfined compressive strength, elastic stiffness, permeability and batch leaching tests were evaluated at set periods. Contaminant recovery analysis after 140 days indicated a similar reduction in 2CBA concentration to approximately 56% in the different grout mixes. The cement constituents exhibited stimulatory and inhibitory effects on soil dehydrogenase activity. Heavy metal leachability as well as the engineering behaviour of the treated soils conformed to acceptable standards. The results of the investigations show considerable promise for the application of MPC in contaminated land remediation.

Keywords: Stabilisation/solidification, Biodegradation, Soil contamination, Magnesium Phosphate Cement, Land reclamation.

1. Introduction

Many contaminated soils are characterised by the concomitant presence of both organics and heavy metals, which limits the deployment of a single remedial technology to achieve a successful cleanup of contaminated sites, since most treatment technologies are contaminant group specific. Hence, developing a remediation technology, which could robustly deal with a wide range of contamination, is not only desirable but also more sustainable.

Stabilisation/Solidification (S/S), which usually employs the addition of cementitious binders, mainly Portland cement (PC) based, has emerged as an efficient and cost-effective method for the treatment of a wide range of heavy metals in both hazardous wastes and contaminated soils, and has gained wide international acceptance (Al-Tabbaa and Stegemann 2005). Its effectiveness for the immobilisation of organic compounds has however been less successful due to interference of organics with setting and hydration processes of the cement. The mechanisms of conventional S/S treatment include chemical fixation and physical encapsulation of contaminants thereby reducing the potential for pollutant transfer into the environment (Al-Tabbaa and Stegemann 2005). S/S treatment therefore reduces the migration of contaminants, both organics and heavy metals, rather than their elimination.

Biodegradation, which generally entails the transformation and degradation of organic compounds through metabolic processes of microorganisms, is the most effective remediation technique for organic contamination to date. Therefore, it would be desirable to facilitate the biodegradation of organic contaminants within a S/S treated contaminated soil to bring about some form of contaminant attenuation over time. However, the characteristic high pH of PC (around 12-13) along with its low porosity impede microbial survival. Moreover, it has been documented that the PC industry contributes to around 5% of global anthropogenic CO₂ emissions; one of the major green house gases contributing to climate change (Worrell et al. 2001; van Oss and Padovani 2003). Hence, the application of a binder with a relatively lower pH, which could also address the sustainability issue with regard to CO_2 emissions, was considered in this work.

Magnesium phosphate cements (MPCs) are formed at room temperature by rapid acid-base reaction between dead burned magnesia and an acid phosphate source. Different variants of MPCs can be formed depending on the acid phosphate. For example, using ammonium

phosphate (NH₄H₂PO₄) would lead to magnesium ammonium phosphate cement, while use of potassium phosphate (KH₂PO₄) would lead to magnesium potassium phosphate cement. The main reaction product of conventional magnesium ammonium phosphate cement employing NH₄H₂PO₄ is struvite (MgNH₄PO₄.6H₂O) (Abdelrazig et al. 1989). The reaction of MgO with KH₂PO₄ yields magnesium potassium phosphate hexahydrate or K-struvite (MgKPO₄.6H₂O) (Wagh 2004). MPCs have found application in structural repair works, refractory materials, borehole sealants in oil drilling and completion works, recycling of benign wastes like coal ashes and mineral waste for use as construction products, and indrum S/S of radioactive and hazardous wastes (Rao et al. 2000). Such cements have been credited with certain technical advantages beneficial to S/S treatment including reduced leachability, higher propensity for binding with waste inclusion, higher resistance to sulphate attack, lower permeability, higher early-age and long-term strengths and higher durability (Abdelrazig et al. 1989).

An added advantage of MPC is its potential to form mixes with different pH ranges, depending on the magnesia (i.e. basic component) and phosphate (i.e. acidic component) contents. This suits environmental applications like biodegradation wherein certain range of pH (5.5 – 8.5) is desired. One potential concern with such low pHs is that heavy metals are likely to leach out as the solubility of a number of metal speciations increase. However, it has been reported that MPCs immobilise heavy metals converting them to phosphates, which are relatively insoluble at the aforementioned pH range (Wagh 2004). This work utilised previously developed MPC mixes (Iyengar and Al-Tabbaa 2007; Iyengar 2008: PhD thesis, Cambridge University) at two extremes of the paste pH range, approximately 6.5 and 10, based on different proportions of the component materials i.e. dead burned magnesia and triple super phosphate (TSP). The ability of these mixes to bring about significant reduction in the leached concentrations of heavy metals from S/S treated contaminated soils has been reported (Iyengar and Al-Tabbaa 2008).

There is a paucity of literature on facilitation of biodegradation within stabilised/solidified waste systems, which were considered in the context of different applications and scenarios. The earliest studies in similar direction focussed on microbial influenced degradation of stabilised/solidified wastes disposed of in landfills (Knight et al. 2002; Sophia et al. 2007). However, these studies highlighted the possible effects on stabilised/solidified waste forms

through microbial action, which may be a problem if microbial growth is encouraged. The possibility of facilitating biodegradation within stabilised/solidified soil systems using a range of additives to PC-based as well as alternative grout systems in the form of Magnesium Oxide Cement and MPC have been investigated (Al-Tabbaa et al. 2007; Harbottle and Al-Tabbaa 2006; Harbottle and Al-Tabbaa 2008). The findings of these studies highlighted the importance of compost addition in encouraging the growth and survival of microbial life within soil-grout systems. However, these studies were limited to organic contaminants; but mixed contaminated soils, was not considered. Furthermore, the engineering behaviour of the S/S treated soil, which is likely to be affected by the incorporation of a biodegradative mechanism, was not evaluated in previous studies.

In this work, 2-Chlorobenzoic acid (2CBA) was used as organic contaminant, and lead nitrate and zinc chloride as metallic contaminants. Chlorobenzoates (CBs) are present in the environment because of the widespread use of herbicides deriving from compounds such as 2,3,6-TCB, dicamba and others; as dead-end products in the degradation of polychlorobiphenyls (PCBs) (Baggi and Zangrossi 1999) and as metabolites of chlorotuolenes (Lehning et al. 1997). 2CBA is the main CB that originates from PCB (Harkness et al. 1993). It was chosen because of its relatively low toxicity and relative ease of degradation (Harbottle and Al-Tabbaa 2008).

Lead and zinc were chosen as typical heavy metal contaminants. Soil pollution due to these metals is from a wide range of industrial and other processes including mining activities, metal processing, electronic industries, various chemical industries, including solvent applications, medical and dental applications, etc (Landner and Reuther 2004; Kabata-Pendias and Mukherjee 2007). The principal factors influencing potential risks of heavy metals are their solubility (or mobility), environmental bioavailability (adsorbed dose), and their toxicological bioavailability (effective dose). Metal mobility and bioavailability are mainly governed by abiotic factors, such as pH, redox conditions, and soil contents of organic matter and clay minerals (Ragnvaldsson et al. 2007).

Specific remediation techniques for soils contaminated by the above-mentioned contaminants include cover systems, in-ground barriers, stabilisation/solidification, soil vapour extraction,

air sparging, in situ soil flushing, bioremediation and soil washing. Although some of these techniques are potentially applicable, their application to the remediation of a specific contaminated site is dependent on a number of factors. Those factors considered of particular importance are the clean-up target, technical feasibility relative to the particular site, soil and contaminant characteristics, long-term monitoring arrangements for slow remedial techniques or for immobilisation and containment techniques, validation of the remediation, health and safety aspects, regulator and public acceptance and cost (Pearl 2000). The present study focuses on the combination of stabilisation/solidification and bioremediation.

The objective of this study was to investigate the feasibility of facilitating organic contaminant degradation and heavy metal immobilisation within a S/S treated soil without compromising the structural integrity of the treated material.

2. Materials and methods

2.1 Model contaminated soil

A model contaminated silty sand providing a simplified simulation of contamination conditions was prepared using Fraction-D Leighton Buzzard sand ($D_{50} \sim 150-300 \mu m$, David Ball Ltd., UK) and silt (silica flour, $D_{50} < 150 \mu m$, David Ball Ltd, UK). Eco-compost (sieved past 2 mm; Scotsdales Ltd., Cambridge, UK), with oven dried moisture content of 100%, was added as organic matter to provide a microbial inoculum as well as a source of nutrients. As the experiments involved different treatment options, three variants of the same soil type with similar composition were used. The sand-silt ratios used were 3, 3.5 and 4 due to difference in compost content, since the effects of compost addition and abiotic contaminant loss were investigated:

- The soil in majority of the mixes was composed of 70% sand, 20% silt and 10% compost.
- One of the mixes had increased compost content and its soil was composed of 60% sand, 15% silt and 25% compost.
- Two mixes were used as abiotic controls, the soil was composed of 75% sand and 25% silt.

In all cases, the soil was prepared with a moisture content of 15%, which includes the moisture content of the compost added. The soils were contaminated with 3000 mg/kg of

each of the three contaminants, 2CBA, lead nitrate and zinc chloride. This resulted in theoretical concentrations of around 1877 and 1439 mg/kg for lead and zinc respectively.

2.2 Binder materials

Two MPC mixes were used, one at the lower pH end (pH ~6.5) and the other at the higher pH end (pH ~10), based on two different combinations of TSP (supplied by RS Minerals, UK) and dead burned magnesia (MgO, Richard Baker Harrison, UK). TSP is a common fertiliser, it is predominantly calcium dihydrogen phosphate, and contains some gypsum (Iyengar and Al-Tabbaa 2008). Dead burned magnesia is composed of 82.6% by weight MgO, 7.5% SiO₂, 5.6% CaO, 3.4% Al₂O₃ and 0.9% Fe₂O₃. The cement constituents were mixed in the ratio, TSP:MgO = 8:1 for the lower pH end, and TSP:MgO = 1:2 for the higher pH end. De-ionised water was used to produce the wet grout in which the cement:water ratio was 2:1. This water content was chosen to ensure a moist environment for microorganisms and was based on related S/S work (Iyengar 2008, PhD thesis, Cambridge University).

2.3 Preparation of stabilised/solidified soil systems

In preparing the model-contaminated soil, the dry soil components (which include the compost) were mixed in a pre-dried and clean rotary drum mixer for several minutes until a consistent mix was achieved. 2CBA was then added in dry powdered form and the soil mixed for several minutes. The metallic compounds were dissolved in de-ionised water and then added to the mix. However, not all mixes included the metallic contaminants. Further mixing was carried out until the mix appeared homogenous. The soil was then incubated at room temperature (i.e. 20 ± 2 °C) for 5 hours. Thereafter, soil samples were taken for initial measurements of contaminant concentration and dehydrogenase activity, prior to cement grout addition. The soil was then mixed with the cement grout in the rotary drum mixer at a dry soil: grout ratio of 2:1. A set of S/S treated uncontaminated soil mixes were used as control samples for engineering behaviour and their preparation followed the same procedure described above except that there was no contaminant addition. Similarly, S/S treated soil containing all three contaminants, prepared in the same way described above but without compost addition, were used as abiotic controls. However, the soil used in the abiotic controls was sterilised in an autoclave at 121 °C, twice, before addition of the contaminants and cement grout. Soil containing compost, autoclaved as above, was initially used for abiotic controls but after S/S

treatment, there was evidence of microbial activity in mixes treated with the higher pH cement formulation. Hence, they were discontinued and soil without compost was used.

Soil-cement mixes were produced by carefully casting the mix materials into cylindrical moulds, 50 mm diameter with length 100 mm, while ensuring a uniform and homogenous mass devoid of air bubbles. The average mass of each cylindrical sample containing the soil-cement grout was approximately 440 g. The moulded samples were stored in curing tanks at room temperature of 20 ± 2 °C for 3 days after which they were demoulded and incubated at 32 ± 4 °C and $95 \pm 3\%$ relative humidity in order to encourage biodegradation. The samples were loosely covered with plastic film to prevent excessive moisture loss.

2.4 Experimental design

Nine treatment options were employed as detailed in Table 1. Each soil-cement mix had three replicate samples for each time point of analysis. In addition, the standard mixes on which permeability testing was conducted had extra duplicate samples for each of three time points of analysis. Analysis of all the S/S treated samples was conducted at 0, 14, 28, 84, and 140 days, unless specified otherwise. The ideas behind the different treatments are as follows:

- Mixes 1 and 2: Standard mixes (mixed contamination scenario)
- Mixes 3 and 4: Effect of the absence of heavy metals, in comparison to mixes 1 and 2
- Mix 5: Effect of increasing the compost content in comparison to mix 2
- Mixes 6 and 7: Uncontaminated controls (for engineering behaviour)
- Mixes 8 and 9: Abiotic controls in comparison to mixes 1 and 2

2.5 Sampling

Generally, the unconfined compressive strength (UCS) of the cylindrical samples was first determined before they were destructively sampled for other tests. Destructive sampling involved crushing the S/S material in a mortar with pestle subsequent to which granular or powdered samples were taken. As a result, samples at different time points were not taken from the same S/S monolith. Separate monolithic cylindrical samples were used for permeability tests.

 Table 1. Components for each of the nine mixes (% by weight)

	Soil			Cement			Contaminants			
Mix description	Sand	Silt	Compost	Water	TSP	MgO	Water	2CBA	Pb(NO₃) ₂	ZnCl ₂
1: Soil with 10% compost containing organic and metallic contaminants, treated with TSP:MgO = 8:1 grout	37.65	10.76	5.38	5.38	23.91	2.99	13.45	0.16	0.16	0.16
2: Soil with 10% compost containing organic and metallic contaminants, treated with TSP:MgO =1:2 grout	37.65	10.76	5.38	5.38	8.97	17.93	13.45	0.16	0.16	0.16
3: Soil with 10% compost containing only organic contaminant, treated with TSP:MgO = 8:1 grout	37.68	10.77	5.38	5.38	23.93	2.99	13.46	0.16	-	-
4: Soil with 10% compost containing only organic contaminant, treated with TSP:MgO = 1:2 grout	37.68	10.77	5.38	5.38	8.97	17.95	13.46	0.16	-	-
5: Soil with 25% compost containing organic and metallic contaminants, treated with TSP:MgO = 1:2 grout	32.28	8.07	13.45	5.38	8.97	17.93	13.45	0.16	0.16	0.16
6: Soil with 10% compost without contaminants, stabilised/solidified with TSP:MgO = 8:1 grout	37.84	10.81	5.41	5.41	24.03	3.00	13.51	-	-	-
7: Soil with 10% compost without contaminants, stabilised/solidified with TSP:MgO = 1:2 grout	37.84	10.81	5.41	5.41	9.01	18.02	13.51	-	-	-
8: Autoclaved soil without compost containing organic and metallic contaminants, treated with TSP:MgO = 8:1 grout	40.34	13.45	-	5.38	23.91	2.99	13.45	0.16	0.16	0.16
9: Autoclaved soil without compost containing organic and metallic contaminants, treated with TSP:MgO = 1:2 grout	40.34	13.45	-	5.38	8.97	17.93	13.45	0.16	0.16	0.16

1 2.6 Testing and analytical methods

The following tests were carried out on the standard treatment mixes: microbial enzyme activity, organic contaminant extraction, batch leaching, pH of soil-cement grout, moisture content, unconfined compressive strength (UCS), elastic stiffness and permeability. Some of the above tests focussed on the behaviour of the contaminant(s) while others assessed the effect of biodegradation on the performance of the stabilised/solidified material over time.

7

Microbial enzyme activity was determined using the TTC dehydrogenase assay following the 8 combined methods of Cassida et al. (1964) and Harbottle and Al-Tabbaa (2008). This was 9 necessary in order to suit the peculiar circumstances of this study as the high concentration of 10 contaminants used caused suppression of microbial activity. Six grams of soil or crushed soil-11 cement was placed in a 16 × 150 mm test tube with 3.5 ml of 0.75% 2,3,5-12 Triphenyltetrazolium chloride (TTC) solution containing 50 mM Trizma hydrochloride. The 13 resulting slurry was vortexed, and the test tube stoppered and incubated for 24 hours at 37 °C. 14 This was followed by ethanol extraction and determination of the amount of 2,3,5-15 triphenyltetrazolium formazan (TPF-a water-insoluble red dye) produced using a UV/VIS 16 17 Spectrophotometer at a wavelength of 485 nm. The choice of dehydrogenase assay in this study was due to the test been indicative of the total metabolic activity of soil 18 19 microorganisms and its successful deployment as a measure of soil biological activity in 20 several works.

21

Organic contaminant analysis was done using the sulphuric acid/ethanol extraction previously 22 23 described by Harbottle and Al-Tabbaa (2008). The moisture content was recorded as the mass 24 of water divided by the oven-dry (105 °C) mass of soil/grout sample. The pH of soil-cement 25 grout was determined by dipping the electrode into a 1:5 soil-cement:water (de-ionised water) 26 suspension that has been stirred and allowed to settle for at least 2 hours (ISO 10390, 2005). Batch leaching followed BS EN 12457 (BSI 2002). 100g of crushed soil-cement sample with 27 particle size < 4 mm was agitated in a litre of water at a pH of 5.6 on a rotating table for 24 28 hours. Thereafter, the leachate was analysed for lead and zinc using an atomic absorption 29 spectrophotometer. 30

31

The UCS of the soil-cement samples was determined according to ASTM test method D1633 (2000) using a universal testing machine in which the vertical load was applied axially at a

constant strain rate of 1.143 mm/min until failure. The maximum pressure was calculated 1 2 from the maximum force and the cross-sectional area of the sample, and reported as the UCS in kPa. Elastic stiffness was calculated in terms of the secant modulus (E_{50}) (i.e. modulus at 3 4 stress level equal to 50% of unconfined compressive strength) using the stress-strain curve derived from the UCS test. Permeability tests were carried out on the samples in duplicate 5 using flexible-wall permeameters (ASTM 2003). Confining pressure of 300 kPa was applied. 6 7 The volume of water passed through a saturated monolithic specimen under pressure in a 8 given period was measured, and the permeability calculated using Darcy's Law.

9

10 2.7 Statistical analysis

11 One-way and two-way analysis of variance (ANOVA) was used for data analysis to test for 12 differences in the performance properties above due to age of testing and differences in 13 cement formulation, compost content, type of contaminants present or the absence of 14 contaminants, and the presence of microbes. Significance was based on $\alpha = 0.05$.

15

16 **3. Results and discussion**

The presentation of the results for organic contaminant analysis and microbial enzyme 17 activity are based on unit mass of oven dry soil, not unit mass of soil-cement sample. This is 18 because the mass of dry soil in the soil-cement mix remained constant throughout the 19 experiment as opposed to that of the soil-cement mix, which changed due to setting and 20 21 hydration reactions of the cement. The values of measured properties presented in the figures 22 are the mean values; the standard deviation is shown by the error bars. Where applicable, the 23 'day 0' values on the graphs represent data obtained for contaminated soil-only samples prior to grout addition. In describing the mixes, for brevity the abbreviations, P, M and C are used 24 25 to refer to triple super phosphate, dead burned magnesia and compost, respectively.

26

27 **3.1 pH of soil-cement grout**

Measures were made of soil-cement grout pH in order to confirm that there was no change in the parameter with time; hence, it does not affect contaminant behaviour over time. The pH of the contaminated soil before treatment was 4.54 due to the acidity of the organic contaminant. Figure 1 shows that with both grout systems, the variation in pH was consistently around 6.5 and 10 for the lower pH and higher pH mixes respectively. With both grout systems, there was significant difference in pH over time due to differences in compost content and type of contaminant(s) present, at the 0.1% level. However, the variation in pH
was consistently around the aforementioned values; hence, the variability was unlikely to
affect contaminant behaviour. The consistence of the pH stems from the fact that after S/S
treatment, the behaviour of the resulting monolith is governed by the grout characteristics.

5

6 **3.2 Moisture content**

7 Moisture content was monitored in order to assess the effects of fluctuations in the parameter 8 on microbial activity. It has been reported that soil microbial biomass and activity declined 9 with decreasing water content (Van Gestel et al. 1993). The water content clearly increased at 10 14 days from its 0-day value of the untreated soil due to grout addition (Figure 2). Thereafter it decreased over time due to evaporation (caused by drying in the curing conditions) and 11 possibly because of the cement hydration reactions (Harbottle and Al-Tabbaa 2008). There 12 was significant moisture loss with increase in sample age (p < 0.1%), but there was no 13 significant difference between the moisture content of both cement formulations. The dip in 14 moisture content at 84 days in the soil-cement systems is mainly due to fluctuations in 15 16 temperature and relative humidity in the incubator in which the samples were stored. As analytical samples were taken from different soil-cement systems at each sampling point, 17 18 fluctuations in the aforementioned properties of the incubator is bound to affect the results obtained at the various time points. Moreover, amidst the high relative humidity of the 19 incubator there were still problems with maintaining steady moisture content in the soil-grout 20 21 systems. The differences in moisture content of the samples cannot be directly linked to any treatment, as these were mainly response of the mixes to fluctuations in environmental 22 conditions, which is likely to have been affected by factors such as position within the 23 24 incubator and time of sample preparation/storage.

P: triple super phosphate, M: dead burned magnesia, C: compost, 2CBA: 2-chlorobenzoic acid

Figure 1. pH of soil-cement grout

P: triple super phosphate, M: dead burned magnesia, C: compost, 2CBA: 2-chlorobenzoic acid

Figure 2. Moisture content of S/S treated contaminated soils

1 3.3 Organic contaminant analysis

2 Table 2 shows 2CBA recovery from the mixes over time. At 28 days, it appeared that mixes 1 3 and 2 (with mixed contamination) indicated higher contaminant loss than the mixes with only organic contamination and higher compost content. However, from 84 to 140 days of treatment, 4 5 contaminant loss in the mixes with 10% compost content (mixes 1, 2, 3 and 4) were similar. After 140 days, there was a reduction in 2CBA concentration to ~56.5% and ~56.3% of the initial 6 7 amount within the lower and higher pH mixes with mixed contamination (mixes 1 and 2), 8 respectively. Contaminant reduction in samples without heavy metals was down to 9 approximately 56.5% of the initial value for both cement formulations. Hence, both binders were as effective in contaminant degradation. The contaminant concentrations observed in mix 2 10 with 10% compost were significantly lower (p = 0.002) than those in mix 5 with 25% compost. A 11 12 similar observation was made by Harbottle (2006) (unpublished results) wherein 10% compost addition to soil was found to cause better contaminant attenuation than 20% compost addition. 13 14 There was no statistically significant difference in contaminant concentration (p = 0.74) between 15 the two cement formulations, but the contaminant concentrations recorded over time were 16 significantly different at the 1% level.

17

18 The abiotic controls (mixes 8 and 9) were monitored for 84 days, unlike the other mixes, which 19 were monitored for 140 days. Hence, comparison between the abiotic controls and the standard 20 mixes (i.e. mix 1 and mix 8, and mix 2 and mix 9) is done at 84 days. There was a large decrease 21 in 2CBA concentration in the abiotic controls between 0 and 14 days compared to the standard 22 mixes. However, at 28 days, 2CBA concentration was marginally lower in the abiotic mixes than the standard mixes. The large difference in contaminant concentration in both sets of mixes at the 23 initial stage may be due to differences in hydration process of the cement formulations since they 24 25 had different composition. The standard mixes contained compost but the abiotic mixes did not. After 84 days, there was a reduction in 2CBA concentration to 75.9% and 75.4% of the initial 26 value in the lower and higher pH mixes of the abiotic controls, respectively. In the standard 27 28 mixes, 2CBA concentration was reduced to 56.7% and 57.3% for the lower and higher pH mixes 29 respectively, at 84 days. There was significant difference (p = 0.04) between the standard mix and 30 the abiotic control of the higher pH cement formulation. However, in the lower pH mixes, there 31 was no significant difference (p = 0.576) between the standard mix and the abiotic control, but there was significant interaction (p = 0.001) between age and biological activity. In both cement 32 33 formulations, contaminant reduction with time was significant at the 0.1% level.

	Time (days)						
Mix description	0	14	28	84	140		
	Contamir	nant concen	tration (mg	g 2CBA/kg	dry soil)		
1: P:M=8:1, 10% C, mixed	3000	2890	2474	1701	1694		
contamination		±110	± 189	± 289	± 326		
2: P:M=1:2, 10% C, mixed	3000	2683	2552	1719	1688		
contamination		± 193	± 272	± 35	± 144		
3: P:M=8:1, 10% C, 2CBA	3000	2976	2920	1715	1694		
only		± 20	± 42	±129	± 84		
4: P:M=1:2, 10% C, 2CBA	3000	2992	2982	1718	1695		
only		± 157	± 53	± 185	± 170		
5: P:M=1:2, 25% C, mixed	3000	2906	2805	1956	1950		
contamination		± 79	±91	± 171	± 188		
8: P:M=8:1, No C, mixed	3000	2504	2419	2278	-		
contamination (abiotic)		± 97	± 105	±126			
9: P:M=1:2, No C, mixed	3000	2702	2522	2262	-		
contamination (abiotic)		± 55	± 62	± 122			

Table 2. Organic contaminant concentration for the mixes

2

P: triple super phosphate, M: dead burned magnesia, C: compost, 2CBA: 2-chlorobenzoic acid

3

4 **3.4 Microbial enzyme activity**

The day 0 points (i.e. the contaminated soils immediately prior to S/S treatment) in Figure 3 5 indicate that in the aftermath of soil contamination by the organic contaminant with or 6 7 without the presence of heavy metals and with both compost contents, there was no evidence of dehydrogenase activity in the soil. However, the model soil composition with 10% 8 9 compost content had a mean dehydrogenase activity of 29.9 µg TPF/g before contamination. With 25% compost content, the uncontaminated model soil had a mean dehydrogenase 10 activity of 52.3 µg TPF/g (see Table 3, section 1). Details of further investigations on 11 dehydrogenase activity, which explains the reason for lack of microbial activity in the day 0 12 13 samples, are shown in Table 3, section 2. It was observed that at mixed contamination levels of 93.75 and 187.5 mg/kg, dehydrogenase activity was higher than that in uncontaminated 14 15 soil, but was reduced at 750 mg/kg and inhibited at 1500 mg/kg and above. Harbottle and Al-Tabbaa (2006) used soil contaminated with 500 mg/kg of the organic contaminant, and there 16 17 was considerable amount of dehydrogenase activity. These show that the absence of dehydrogenase activity in the contaminated soils prior to S/S treatment was due to the high 18 19 level of contamination. A similar observation in which dehydrogenase activity was stimulated at low levels of mixed contamination and inhibited at higher levels was reported by Gong et 20 21 al. (1996). It has been documented that the maximum level microbes can tolerate for each of

- 1 both metals used in this study is about 1000 mg/kg (Ruthven and Cairns 1973; Stuczynski et
- 2 al. 2003).
- 3

5

4

6 7

8 The test result at 14 days after grout addition indicated the presence of microbial activity in 9 soil-cement systems with the greater magnesia content (P:M=1:2, pH ~10), mixes 2, 4 and 5; but surprisingly there was no evidence of microbial activity in soil-cement systems with 10 11 greater phosphate content (P:M=8:1), mixes 1 and 3. It was thought that the lower pH mixes whose pH (~6.5) falls within the optimum pH range favourable for microbial activity (5.5 to 12 8.5) would enhance microbial activity more than the higher pH mixes (Harbottle and Al-13 Tabbaa 2006). The resuscitation of microbial activity after the addition of the higher pH 14 cement is likely due to the stimulatory effect of the cement as it helps to bind the 15 contaminants in an unavailable form thus creating less toxic conditions. It is likely that the 16 organic contaminant was trapped in pores within the solid matrix thereby reducing its toxicity 17 to microbes, especially for mix 4 with 2CBA only. In the course of the experiments, it was 18

1 observed that TSP was responsible for the suppression of dehydrogenase activity in the lower 2 pH mixes. The lower pH mixes did not indicate any trace of dehydrogenase activity up to when sampling was done at 84 days. However, it was observed that 140-day samples of mix 3 3 (P:M=8:1, 2CBA only, pH~6.5) had evidence of dehydrogenase activity. The exact 4 mechanism responsible for this is poorly understood but it is likely that the interaction of age 5 and absence of heavy metals may have had some effect on such anomalous behaviour. It is 6 7 suspected that dehydrogenase activity in mix 1 (P:M=8:1, mixed contamination, pH~6.5) may have recovered over time like mix 3 but for its rapid moisture loss and slight decrease in 8 9 pH (see Figures 1 and 2). Figure 3 also shows that for samples treated with the higher pH grout, compared to 10% compost content, 25% compost content led to comparatively 10 increased microbial activity. In all samples treated with the higher pH grout, considerable 11 amounts of dehydrogenase activity were sustained for over 28 days, thereafter the activity 12 decreased with time. There was significant difference in dehydrogenase activity between 13 mixes with 10% and 25% compost content at the 0.1% level. The difference between 14 dehydrogenase activities observed in the higher pH mixes with and without heavy metals was 15 not statistically significant (p = 0.06). However, the dehydrogenase activities recorded at 16 17 different sample ages were significantly different at 0.1% level.

18

Further investigations into the absence of dehydrogenase activity in the lower pH mixes, 19 20 which ought to encourage biological activity revealed two interesting findings. Dead burned magnesia was found to interfere with the test result by inducing a similar colour change (pink 21 22 colouration) associated with TPF production, which is brought about by the action of dehydrogenase enzymes in the assay. Thus, it apparently stimulates dehydrogenase activity. It 23 24 was also observed that TSP apparently inhibits soil dehydrogenase activity. The results of the 25 tests are shown in Table 3, section 3. The abiotic dehydrogenase activity due to magnesia 26 content was quantified to be about 21.1 µg TPF/g. Cement constituents (MgO and TSP) only, 27 in the ratio P:M=1:2 (pH ~10), had an increased amount of about 27.5 µg TPF/g, while the cement formulation with pH ~ 6.5 (P:M=8:1) had an activity of 21.4 μ g TPF/g. Tests on the 28 abiotic control with higher magnesia content showed a similar amount of the abiotic 29 dehydrogenase activity, which appeared to fade with time (Table 3, section 5). These results 30 suggest that the presence of dead burned magnesia or perhaps some impurities/compounds 31 within it stimulates soil dehydrogenase activity, though there are indications that the main 32 33 reaction product of the cementitious system, Ca-Struvite (Iyengar 2008: PhD thesis,

1 Cambridge University), further enhances the stimulation. A list of substances that could cause 2 a similar stimulation of soil dehydrogenase activity has been identified in the literature (Weaver et al. 1994) but magnesium was not listed. The work of Takahashi and Weiner 3 (1980) which reported the stimulation of catalytic activity of horse liver aldehyde 4 dehydrogenase by magnesium ions is probably the only related case in the literature. 5 However, the steady state assay used in the said work did not involve soil. The results of this 6 7 study also show that the influence of pH noted by Mahmoud and Ghaly (2004), whereby high pH environments (9.5 \leq pH \leq 13) can lead to non-enzymatic production of TPF in the TTC 8 dehydrogenase assay, does not seem to be responsible for the aforementioned abiotic 9 dehydrogenase activity. This is because both cement mixes, with pH 10 and 6.5, indicated the 10 non-enzymatic TPF production; hence, the abiotic dehydrogenase activity is due to the effect 11 of magnesia not pH. The results further indicate that the dehydrogenase activity observed in 12 the higher pH soil-cement mixes has a biotic and an abiotic component. 13

14

The investigations suggested that TSP apparently inhibits soil dehydrogenase activity, which 15 explains the absence of dehydrogenase activity in the lower pH soil-cement mixes. TSP was 16 found to inhibit dehydrogenase activity in pristine compost even at 2.5% TSP content in 17 18 compost-TSP mixture (Table 3, section 3). In the light of the above, it is interesting to note that although the percentage of TSP in soil-cement samples with the higher pH was $\sim 9\%$, 19 20 and that in the combination of only TSP and MgO (P:M=8:1), was 88.9%, dehydrogenase activity was still observed in these mixtures. It is likely that this is due to the relative amounts 21 22 of magnesia and TSP in the said mixtures, as reaction between TSP and sufficient amount of magnesia removes the inhibitory effect of TSP. Moreover, the results in section 3 of Table 3 23 24 show that the abiotic dehydrogenase activity was reduced when TSP was in greater amount 25 than magnesia. This is probably one of the first studies reporting inhibition of dehydrogenase 26 activity by TSP. It is in the literature that added phosphates stimulated soil dehydrogenase activity, and although substances that seemed to inhibit the activity have been identified, TSP 27 is not listed (Weaver et al. 1994). A different phosphate source, potassium dihydrogen 28 phosphate (KH₂PO₄), was employed in a similar study (Harbottle and Al-Tabbaa 2008) but 29 no such inhibition was observed. However, the percentage of KH₂PO₄ was about 10% in the 30 said work, which is similar to the amount of TSP in the higher pH soil-cement mixes that 31 indicated dehydrogenase activity in this study. Furthermore, a few studies have reported 32

reduction of soil microbial activity, as measured by other indices of soil biological activity, in 1

Section	Treatment kind	Dehydrogenase activi (µg TPF/g)	
1	Uncontaminated model soil with 10% c	ompost content	29.9 ± 12.3
	Uncontaminated model soil with 25% c	52.3 ± 1.15	
2	Model soil with 10% compost content	0 mg/kg	29.9 ± 12.3
	and different levels of mixed	93.75 mg/kg	63.4 ± 9.0
	contamination, using the same amount		
	of each of the three contaminants	187.5 mg/kg	47.7 ± 10.3
	(2CBA, lead nitrate and zinc chloride)	750 mg/kg	25.0 <u>+</u> 6.6
	at the following contaminant levels:	1500 mg/kg	0.0
	C	2250 mg/kg	0.0
	Compost only, with 3000 mg/kg mixed	0.0	
3	Triple Super Phosphate (P) only		0.0
	Dead burned magnesia (M) only	21.1 ± 0.5 (abiotic)	
	Grout constituents only, $P:M = 8:1$ (pH-	21.4 <u>+</u> 0.0 (abiotic)	
	Grout constituents only, $P:M = 1:2$ (pH-	27.5 ± 0.2 (abiotic)	
	Uncontaminated soil with 10% compost	0.0	
	treated with $P:M = 8:1$ grout, mix 6 (after		
	Uncontaminated soil with 10% compost	28.4 <u>+</u> 2.7	
	treated with $P:M = 1:2$ grout, mix 7 (after the formula of the f		
	Compost plus different amounts of P, P	0.0	
	5%, 10%, 20% and 30% of the mixture,		
	contamination	5	
4	Mix 8, P:M=8:1, no compost, mixed con	ntamination	0.0
	(abiotic control) (at 0, 14, 28 and 84 day	/s)	
5	Mix 9, P:M=1:2, no compost,	0-day	0.0
	mixed contamination (abiotic control)	14-day	21.1 <u>+</u> 0.0
		28-day	7.3 <u>+</u> 0.5
		84-day	5.2 ± 0.5

3

Table 2 Details of other Dehydrogeness activity test

5

6

P: triple super phosphate, M: dead burned magnesia, 2CBA: 2-chlorobenzoic acid

7 3.5 Batch leaching

Batch leaching was carried out on the standard treatment mixes only (mixes 1 and 2). The 8 results are shown in Table 4. As expected, S/S treatment significantly reduced the 9 leachability of lead and zinc in the soils. The leachate concentrations of both metals in soil-10 cement samples treated with the two different grout mixes were well below the inert landfill 11

1 waste acceptance criteria (WAC) specified in the EU Landfill Directive (European Commission 1999) at all sampling times. A comparison of the leachate concentration of zinc 2 in both grout systems indicates that the higher pH system achieved a slightly better 3 immobilisation of the contaminant than the lower pH system over time. It is common 4 5 knowledge that metal solubility usually increases with decreasing pH and this seems to have been more pronounced in the grout systems, with zinc than lead. There was significant 6 7 difference (p = 0.002) in the leached concentrations of lead over time in both cement formulations. The difference in the leached concentrations of zinc over time between both 8 9 cement formulations was significant at the 0.1% level.

10

11

Table 4. Datch leaching results for Leau and Zhic recover	Table 4	. Batch	leaching	results for	Lead	and Zin	ic recover
---	---------	---------	----------	-------------	------	---------	------------

	fime (days	5)	Time (days)				
28	84	140	28	84	140		
Lead lea	entration	Zinc leachate concentration					
	(mg/kg)		(mg/kg)				
0.005	0.002	0.0095	0.815	0.833	0.94		
±	±	±	±	±	±		
0.0005	0.0001	0.0002	0.045	0.056	0.036		
0.0075	0.018	0.0045	0.34	0.1	0.1		
±	±	±	±	±	±		
0.0008	0.003	0.0006	0.0006	0.021	0.014		
	$ 28 Lead lead 0.005 \pm 0.0005 0.0075 \pm 0.0008 centrations of lead centrations of lead $			Time (days) 28 84 140 28 Lead leachate concentration Zinc le (mg/kg) 0.005 0.002 0.0095 0.815 \pm \pm \pm \pm \pm 0.0005 0.0001 0.0002 0.045 0.0075 0.018 0.0045 0.34 \pm \pm \pm \pm 0.0008 0.003 0.0006 0.0006	28 84 140 28 84 Lead leachate concentration (mg/kg) Zinc leachate concentration (mg/kg) mg/kg 0.005 0.002 0.0095 0.815 0.833 \pm \pm \pm \pm \pm 0.0005 0.0001 0.0002 0.045 0.056 0.0075 0.018 0.0045 0.34 0.1 \pm \pm \pm \pm \pm 0.0008 0.003 0.0006 0.0016 0.021		

12 13

Waste acceptance criteria for inert landfills for lead and zinc are 0.5 and 4 mg/kg respectively

P: triple super phosphate, M: dead burned magnesia, C: compost

- 14 15
- 16

17 **3.6** Linkage between dehydrogenase activity and concentration of contaminants

The results in Table 2 and Figure 3 show that loss of the organic contaminant in mix 5 (25%) 18 compost content) was lower than that in mix 2 (10% compost content), although the 19 dehydrogenase assay showed that 25% compost content led to increased microbial activity 20 than 10% compost content. As mentioned earlier, this has been previously observed 21 22 (Harbottle 2006, unpublished results) but the exact mechanism responsible for the behaviour is not clearly understood. Furthermore, loss of the organic contaminant in the lower pH mixes 23 in which dehydrogenase activity was inhibited was similar to that observed in the higher pH 24 25 mixes with evidence of microbial activity. Moreover, there was contaminant reduction in abiotic controls too, and the contaminant concentrations recorded at the initial stage was 26 27 lower than those obtained in the standard mixes. However, the attenuation recorded in the

standard mixes at 84 days was significantly lower than that in the abiotic controls. In the 1 2 higher pH cement, the difference was significant at the 1% level; in the lower pH cement, it was significant at the 5% level. Figure 3 shows that by 84 days, dehydrogenase activity in the 3 higher pH mixes had significantly declined such that data obtained at 140 days were only 4 5 slightly lower. This is corroborated by the results in Table 2 in which contaminant concentrations at 84 and 140 days followed a similar trend. Dehydrogenase activity was also 6 7 observed for the first time in a set of soil-cement samples treated with the lower pH cement (mix 3) at 140 days, when 44% of the organic was lost. These observations question the 8 9 influence of microbes in the contaminant reduction recorded, as well as the suitability of dehydrogenase assay for evaluating microbial activity in the cementitious system. It also 10 suggests the likelihood of abiotic sources of contaminant loss. It is thought that contaminant 11 loss is due to the combined effect of biodegradation and other abiotic factors like chemical 12 fixation of the contaminant by interaction between the cement's hydration product(s) and the 13 contaminant, especially as volatilisation is ruled out since 2CBA is non-volatile. The 14 potential for direct immobilisation of organic contaminants by S/S treatment processes, albeit 15 with low efficiency, has been reported (Paria and Yuet 2006). 16

The results of the batch leaching test suggest that the effect of heavy metals on biological activity in the treated soils is ruled out, especially as leachability of the metals was significantly reduced and also considering the fact that some of the treated soils indicated biological activity.

21 **3.7 Engineering properties**

The results of UCS, elastic stiffness and permeability are presented in Figures 4, 5 and 6 respectively. These tests sought to evaluate the effect of grout mix, mixed contamination and increased compost content on the measured properties. Hence, only results of the standard mixes (mixes 1 and 2), the mix with 25% compost content (mix 5) and those of the uncontaminated control mixes for engineering behaviour (mix 6 and 7) are shown.

27

There was a marked difference (p < 0.001) in the UCS of soil-cement systems treated with both cement formulations. Figure 4 shows that the higher pH grout system (mixes 2, 5, and 7) had UCS values of at least 2000 kPa after 28 days of treatment while the UCS of the lower pH grout system (mixes 1 and 6) was about 200 kPa. There was an appreciable increase in the UCS of the former over time while that of the latter was fairly constant. MPCs are primarily

formed by acid-base reactions initially and subsequent strength development may be caused 1 2 by some condensation as well as hydration reactions. In the lower pH soil-cement samples, there was considerable unreacted TSP that does not therefore contribute to strength 3 development. Visual inspection showed that samples with higher phosphate content appeared 4 more porous than those with higher magnesia content. Crystals of unreacted TSP were 5 noticeable on the surface of aged samples of the higher phosphate formulation. This is 6 7 probably responsible for the low UCS values obtained. Compressive strength is known to decrease with increase in porosity (Pandey and Sharma 2000). With the lower pH grout 8 9 (P:M=8:1), there was no significant effect of the presence of contaminants (p = 0.22) or age (p = 0.14) on strength development. There was significant response of UCS of the higher pH 10 grout (P:M=1:2) to the presence of contaminants (p < 0.001) as it favoured strength 11 development over time (Figure 4). It has been reported that in certain instances, increased 12 concentrations of heavy metal contaminants like lead in the range of 1000 mg/kg to 2000 13 mg/kg led to a stronger structure (van Jarsveld and van Deventer 1999). It was assumed that 14 the chemical nature of the immobilised ion contributed to the formation of specific phases 15 during synthesis leading to a stronger structure. It is interesting to note that increased 16 compost content did not impair strength development but rather it appears to have favoured 17 18 it. The 28-day UCS of mix 5 (with 25% compost) was about twice (4218 kPa) the value obtained for mixes 2 and 7 with 10% compost (about 2000 kPa). However, over time, 10% 19 20 compost content proved to be better. The UCS of the higher pH mixes is well above acceptable standards; for example, the UK Environment Agency (2006) requires a minimum 21 22 UCS of 1 MPa at 28 days. However, this was favoured by the high curing temperature as there is a tendency for UCS to increase as a function of temperature since temperature affects 23 24 hydration rate, and coarsens the matrix structure (Kim et al 2002).

The variation of stiffness with time (see Figure 5) in the cement-treated soils was similar to 5 that of the UCS previously discussed with the same factors highlighted affecting the stiffness 6 of the samples. In the final analysis, the grout mix with higher magnesia content (mixes 2, 5 7 8 and 7) led to higher values of stiffness than the one with higher phosphate content (mixes 1) 9 and 6). It was observed that compost content did not cause significant negative impact on stiffness (p = 0.46) when compared to the uncontaminated control (Figure 5), but the 10 11 difference between both mixes over time was significant at the 5% level. As compressibility is the reciprocal of stiffness, the results suggest that with the contaminated samples, 25% 12 13 compost addition to soil increases the compressibility of the monolith formed, while 10%compost addition gives a stronger and less compressible material. The apparent decrease in 14 stiffness of the uncontaminated control samples with both grout mixes (mixes 6 and 7) at 140 15 days compared to the 84-day value is interesting. However, it was not statistically significant 16 17 (p = 0.06). Samples with mixed contamination had lower compressibility than uncontaminated samples with both grout mixes at 140 days. The effect of contamination was 18

- significant in the lower pH mixes (p = 0.012) but was not statistically significant (p = 0.08) in
- 2 the higher pH mixes.
- 3

4 5

6 7

P: triple super phosphate, M: dead burned magnesia, C: compost

Figure 5. Elastic stiffness for the mixes

8 Figure 6 shows the permeability of soil-cement systems with both grout mixes, with and without contaminants. These served to evaluate the effect of contaminant immobilisation and 9 degradation on permeability of the treated soils. The higher pH cement formulation, which 10 11 had clear evidence of microbial activity, was monitored for a longer period (140 days), while the lower pH formulation without clear evidence of microbial activity was monitored for 84 12 days. Therefore, analysis for P:M=1:2 soil-cement systems (mixes 2 and 7) was done at 28, 13 84 and 140 days, while that of P:M=8:1 soil-cement systems (mixes 1 and 6) was done at 28 14 and 84 days. Samples treated with the higher phosphate content grout were found to be more 15 permeable (p = 0.005) than those treated with the higher magnesia content grout. This 16 corroborates the aforementioned UCS results. The permeability of the former was relatively 17 constant over time, around 4.49 x 10^{-9} m/s for contaminated samples, and 3.4 x 10^{-9} m/s for 18 19 uncontaminated samples, while that of the latter slightly varied over time with 140-day values at 1.38 x 10⁻⁹ m/s and 0.72 x 10⁻⁹ m/s for contaminated and uncontaminated samples 20 24 respectively. There was significant difference in permeability due to the presence of contaminants at 0.1% level in the higher pH mixes. In the lower pH mixes, the effect of contaminants was significant at the 5% level. One of the contaminants used, zinc, has been found to increase the permeability of Portland cement, probably by promoting ettringite formation, and some other organics have been reported to increase the porosity, and hence permeability of cement (Trussell and Spence 1994). Thus, the presence of contaminants is likely to cause a significant difference in permeability.

8

In some mixes (e.g. mix 7, 28 days), there is high variation between the duplicate samples 9 tested. This is probably a reflection of imperfections in recreating conditions from one sample 10 to the next during sample preparation. Permeability measurement is sensitive to changes that 11 12 have occurred during the experiments, for example, different patterns of cracks being formed. The differences in permeability between contaminated and uncontaminated samples confirm 13 the findings of Smith and Al-Tabbaa (2007) in which contaminated S/S treated soils 14 (contaminated with lead and zinc) were found to exhibit higher values of permeability than 15 their uncontaminated counterparts. These values conform to acceptable standards. The 16 permeability limit is usually taken as 10^{-9} m/s in the UK for in-ground treatment. The United 17 States Environmental Protection Agency tends to use the same value for disposal to landfill. 18 The same value is used in Canada for utilisation, while a higher limit value of 10^{-8} m/s is used 19 for disposal scenarios (Al-Tabbaa and Stegemann 2005). Generally, permeability 20 demonstrates a decreasing tendency as age increases (p < 0.001) save for the 28-day result of 21 22 mix 2. The decreasing tendency in permeability with age is possibly due to continued condensation and hydration reactions in the cementitious system, as opposed to previous 23 24 studies where permeability was found to increase with age. However, it appears to support the durability of MPCs reported in the literature. 25

3

4

5 **4. Conclusions**

6 This work presented details of investigations on facilitating contaminant immobilisation and 7 biodegradation within a S/S treatment system employing two MPC formulations as binder. A 8 number of tests were carried out at set periods to assess biodegradation of the organic 9 contaminant and immobilisation of the heavy metal contaminants, as well as the engineering 10 behaviour of the cement-stabilised material.

11

The findings of this research raise the question of suitability of the dehydrogenase assay for 12 evaluating biological activity in the MPC systems due to the apparent stimulatory and 13 14 inhibitory effects exhibited by the cement constituents on the test result. Biotic and abiotic dehydrogenase activities were observed in mixes with higher magnesia content while TSP 15 16 was found to inhibit dehydrogenase activity in mixes with higher phosphate content. There 17 was a reduction in organic contaminant concentration, down to ~56% of the initial value, in mixes with both cement formulations after 140 days. The Standard mixes indicated higher 18 19 contaminant reduction than the abiotic controls after 84 days. Soil-cement mix with 25% compost content was found to exhibit higher dehydrogenase activity but lower reduction in 20 21 organic contaminant concentration than mixes with 10% compost content. Further

investigations are required to elucidate the influence of microbes in the observed contaminant
degradation. The leached concentrations of heavy metals were significantly reduced in both
cement formulations to <0.01 and 0.1 mg/kg for lead and zinc respectively. Generally, the
engineering behaviour of the treated soils conformed to acceptable standards.

5

6 The results of the study showed that with the appropriate magnesia content, contaminant 7 immobilisation and biodegradation could occur simultaneously without detrimental impacts 8 on the structural integrity of the stabilised material. The application of such MPC grout mix 9 appeared to stimulate microbial activity in a heavily contaminated soil and the fact that 10 microbes could still survive and remain active at pH levels slightly above the upper limit for 11 microbial survival (pH 8.5) further supports the view.

12

This work presented a useful assessment of the effectiveness of MPC formulations for stabilisation/solidification of contaminated soils. Although, the research was limited to an organic contaminant and two heavy metals, it has highlighted the strong and weak aspects of the treatment system and areas that require further investigations. The results so far are promising for the application of the cement in contaminated land remediation.

18

19 Acknowledgements

The authors are thankful to the Cambridge Commonwealth Trust for provision of financialsupport to the first author.

22

23 **References**

Abdelrazig, B.E.I., Sharp, J.H., Ei-Jazairi, B. (1989). The microstructure and mechanical
properties of mortars made from magnesia-phosphate cement. *Cement and Concrete Research*, 19, 247-258.

27

Al-Tabbaa, A., & Stegemann, J.A. (2005). *Stabilisation/Solidification Treatment and Remediation*. Proceedings of the International Conference, April. London: Taylor & Francis.
 30

Al-Tabbaa, A., Harbottle, M., & Evans, C. (2007). Robust sustainable technical solutions. In
T. Dixon, M. Raco, P. Catney, D. Lerner, (Eds), *Sustainable brownfield regeneration: Liveable places from problem spaces* (pp 203 – 236). Oxford: Blackwell.

34

ASTM D 5084-03 (2003). Standard test methods for measurement of hydraulic conductivity
 of saturated porous materials using a flexible wall permeameter. West Conshohocken:
 American Society for Testing of Materials.

ASTM Test Method D1633-00 (2000). Standard method for compressive strength of moulded 1 soil-cement cylinders. West Conshohocken: American Society for Testing of Materials. 2 3 Baggi, G., Zangrossi, M. (1999). Degradation of chlorobenzoates in soil suspensions by 4 indigenous populations and a specialized organism: interactions between growth and non-5 growth substrates. FEMS Microbiology Ecology, 29: 311–318. 6 7 8 BS EN 12457: Part 2 (2002). Characterisation of waste – Leaching; Compliance test for leaching of granular waste materials and sludges –Part 2: One stage batch test at a liquid to 9 solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size 10 reduction). London: British Standards Institution. 11 12 13 Cassida, L.E., Jr., Klein, D.A., Santoro, T. (1964). Soil dehydrogenase activity. Soil Science, 14 98, 371–376. 15 Environment Agency. (2006). Guidance for waste destined for disposal in landfills -16 17 Interpretation of the waste acceptance requirements of the landfill (England and Wales) Regulations 2002, version 2. London: Environment Agency. 18 19 20 European Commission (1999). Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste, 399L0031, Official Journal L 182, 16/07/1999. 21 22 23 Gong P., Sun, T-H., Beudert, G., Hahn, H.H. (1996). Ecological effects of combined organic or inorganic pollution on soil microbial activities. Water, Air, and Soil Pollution, 96, 133-24 25 143. 26 Harbottle, M., & Al-Tabbaa, A. (2006). Combining stabilisation/solidification with 27 biodegradation to enhance long-term remediation performance. In L. Ubetini, (Ed). 28 Proceedings of the second IASTED International Conference on Advanced Technology in the 29 Environmental Field, (pp 222 – 227), February. Lanzarote, Spain: Acta Press. 30 31 32 Harbottle, M.J., Al-Tabbaa, A. (2008). Degradation of 2-chlorobenzoic acid in stabilised/solidified soil systems. International Biodeterioration & Biodegradation, 61, 173-33 181. 34 35 Harkness, M.R., McDermott, J.B., Abramowicz, D.A., Salvo, J.J., Flanagan, W.P., Stephens, 36 M.L., et al. (1993). In situ stimulation of aerobic PCB biodegradation in Hudson river sediments. 37 Science, 259(5094), 503-507. 38 39 40 International Organisation for Standardisation (ISO) (2005). Soil quality: determination of pH. ISO 10390. Geneva: ISO. 41 42 Iyengar, S., & Al-Tabbaa, A. (2008). Application of two novel magnesia-based cements in 43 44 stabilisation/solidification of contaminated soils. In Proceedings of GeoCongress: Geotechnics of waste management and remediation, (pp. 716 - 723), March. New Orleans: 45 American Society of Civil Engineers. 46 47

- Iyengar, S.R., Al-Tabbaa, A. (2007). Developmental study of a low-pH magnesium phosphate cement for environmental applications. *Environmental Technology*, 28(12), 1387-1401.
 Kabata-Pendias, A., & Mukherjee, A.B. (2007). *Trace elements from soil to human*. Berlin:
 Springer.
- 6 7
- Kelly, J.M., Henderson, G.S. (1978). Effects of nitrogen and phosphorus additions on
 deciduous litter decomposition. *Soil Science Society of America Journal*, 42, 972–976.
- 10
- Kim J-K, Han, S.H., Park, S.K. (2002). Effect of temperature and aging on the mechanical
 properties of concrete, Part II. Prediction model. *Cement and Concrete Research*, 32, 1095–
 1100.
- 14
- Knight, J., Cheeseman, C., Rogers, C. (2002). Microbial influenced degradation of solidified
 waste binder. *Waste Management*, 22, 187–193.
- 17
- Landner, L. & Reuther, R. (2004). *Metals in society and in the environment*. Dordrecht:
 Kluwer Academic Publishers.
- Lehning, A., Fock, U., Wittich, R-M., Timmis, K.N., Pieper, D.H. (1997). Metabolism of
 chlorotoluenes by Burkholderia sp. strain PS12 and toluene dioxygenase of pseudomonas
 putida F1: evidence for monooxygenation by toluene and chlorobenzene dioxygenases. *Applied and Environmental Microbiology*, 63(5), 1974-1979.
- Mahmoud, N.S., Ghaly, A.E. (2004). Influence of temperature and pH on the nonenzymatic
 reduction of triphenyltetrazolium chloride. *Biotechnology Progress*, 20, 346–353.
- Pandey, S.P., Sharma, R.L. (2000). The influence of mineral additives on the strength and
 porosity of OPC mortar. *Cement and Concrete Research*, 30(1), 19–23.
- Paria, S., Yuet, P.K. (2006). Solidification/stabilization of organic and inorganic
 contaminants using Portland cement: a literature review. *Environmental Reviews*, 14, 217255.
- Pearl, M. (2000). Technologies for remediating radioactively contaminated land. *Nuclear Energy-Journal of the British Nuclear Energy Society*, 39(2), 107-112.
- Ragnvaldsson, D., Berglind, R., Tysklind, M., Leffler, P. (2007). Environmental hazard screening
 of a metal polluted site using pressurized liquid extraction and two in vitro bioassays. *Ambio*,
 36(6), 494-501.
- Rao, A.J., Pagilla, K.R., Wagh, A.S. (2000). Stabilisation and solidification of metal-laden
 wastes by compaction and magnesium phosphate-based binder. *Journal of Air Waste Management Association*, 50(9), 1623-1631.
- Ruthven, J.A., Cairns, J. (1973). Response of fresh-water protozoan artificial communities to
 metals. *Journal of Protozoology*, 20, 127-135.
- 49

46

- Smith, S.E., & Al-Tabbaa, A. (2007). Climate change impacts on the physical and 1 mechanical properties of stabilised/solidified contaminated soil. In Proceedings of the Hong 2 Kong Institution of Civil Engineers International Conference on Climate Change, May. 3 4 5 Sophia, A.C., Swaminathan, K., Sandhya, S. (2007). Microbially-influenced degradation of solidified/stabilized metal waste. Bioresource Technology, 98, 2562-2567. 6 7 Stuczynski, T.I., McCarty, G.W., Siebielec, G. (2003). Response of soil microbiological 8 activities to cadmium, lead, and zinc salt amendments. Journal of Environmental Quality, 9 10 32,1346-1355. 11 Takahashi, K., Weiner, H. (1980). Magnesium stimulation of catalytic activity of horse liver 12 13 aldehyde dehydrogenase. Journal of Biological Chemistry, 255(17), 8206-8209. 14 Thirukkumaran, C.M., Parkinson, D. (2000). Microbial respiration, biomass, metabolic 15 16 quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizers. Soil Biology and Biochemistry, 32, 59-66. 17 18 19 Trussell, S., Spence, R.D. (1994). A review of solidification/stabilisation interferences. Waste Management, 14(6), 507-519. 20 21 van Jarsveld, J.G.S., van Deventer, J.S.J. (1999). The effect of metal contaminants on the 22 formation and properties of waste-based geopolymers. Cement and Concrete Research, 29, 23 1189-1200. 24 25 26 Van Gestal, M., Merckx, R., Vlassak, K. (1993). Microbial biomass and activity in soils with fluctuating water contents. Geoderma, 56, 617-626. 27 28 29 van Oss, H.G., Padovani, A.C. (2003). Cement manufacture and the environment Part II: 30 Environmental challenges and opportunities. Journal of Industrial Ecology, 7(1), 93–126. 31 32 Wagh, A.S. (2004). Chemically bonded phosphate ceramics. Oxford: Elsevier. 33 34 Weaver, R.W., Angle, J.S., & Bottomley, P.S. (eds) (1994). Methods of soil analysis, Part 2 microbiological and biological and biochemical properties. Madison: Soil Science Society of 35 America Book series, No. 5. 36 37 38 Worrell, E., Price, L., Martin, N., Hendriks, C., Meida, L.O. (2001). Carbon dioxide 39 emissions from the global cement industry. Annual Review of Energy and Environment, 26,
- 303-329. 40